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Nonequilibrium effects on slow dynamics in concentrated colloidal suspensions
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An alternative stochastic diffusion equation is proposed to study the dynamics of nonequilibrium density
fluctuations in concentrated hard-sphere suspensions of interacting Brownian particles with both hydrodynamic
and direct interactions among particles. The singularity of the correlation effect of the many-body hydrody-
namic interactions is shown to drastically influence the qualitative behavior of the relaxation of nonequilibrium
density fluctuations, and thus to cause the two different slow relaxations whose time caledt,, , diverge
as the volume fraction of Brownian particles approaches the critical Valpe(%)slﬂ In3—8In2+2); tg
~(1— ¢l po) "t andt,~ (1— ¢/ @) 2. [S1063-651X%96)51908-

PACS numbes): 82.70.Dd, 05.40tj, 51.10-+y

Although there has been a growing interest in the dy-cient. As was shown in Ref7], the averaged number den-
namic properties of concentrated colloidal suspensions, mor&ty n(x,t) obeys the alternative diffusion equation
experimental, theoretical, and numerical studies are still 5
needgd to obta]n a deeper understapdlng of the dynamics of Z n(x,t)=V-[Dg(®(x,))VNn(x,t)] 1)
density fluctuations over the whole time rarige-6]. In or- at
der to study the self-diffusion process in concentrated sus- ith th If-diffusi fficient
pensions, Tokuyama and Oppenhdint have recently pro- wi € seli-difiusion coetlicien
posed an al.teratn_/e d|ffg$|on equgnon fqr the average Ds(<b)=D§(¢)(1—ud>/¢c)/[l+D§(¢)K((I>)], )
number density of interacting Brownian particles and found
that the generalized self-diffusion coefficient consists of twowhere ® (x,t) = ¢n(x,t)/n, denotes the local volume frac-
kinds of many-body hydrodynamic interactions among partion and satisfies the conservation law
ticles; the screening effect, which mainly contributes to the
short-time self-diffusion process, and the correlation effect f _

' ' 1/V) | dx ®(x,t)=¢. 3
which dominates the self-diffusion process after the short- ( )| dxex=¢ @

time region, exhibiting a singularity at the critical volume Th o/ in th ¢ Eq(2) i h

fraction ¢.. In this paper, therefore, we study the dynamic:scoe Itg(rjmef?ect dﬁfgt Ine;netr:]:ngﬁg?tt-or;r? e ﬂ(d)rc?(;\/(ra;r:\'s and
of nonequilibrium density fluctuations in concentrated sus- ouple ) W ic| ge ny hy hI h
pensions based on their theory. We first propose a Langeviﬂ'recf. |nt$ract|on§ amdong dp?mc es. We g/ostze e[)e that the
equation for the nonequilibrium density fluctuations coupling factoru is reduced from 2 to ( Y. by the

. short-range hydrodynamic interactions, where_.2is ob-
én(x,t) around the average number densifk,t) and then tained bygthe Ej/irect):nteractions onlg]. e

discuss the asymptotic properties of the self-intermediate- 5 is” seen from Eq(2), the two kinds of many-body
scattering functiorFs(k,t). Thus, we first show that the sin- effects due to the hydrodynamic interactions play a crucial
the relaxations of the nonequilibrium density fluctuations,(screening effect L($) due to the local many-body hydor-
leading to slow relaxations near the critical volume fractiondynamic interactions between particles, which becomes im-

be. portant for the short-time regiotg<t<tp, and is given by
We consider a colloidal suspension with the particle vol-

ume fractiong=4may*ny/3, which consists oN identical L(h)= 2B? _C +E
spherical particles with radite, and an incompressible fluid ¢)= 1-B 1+2C E
with viscosity 7, in the volumeV, whereny=N/V is the 2

DC%(2E+2CE-D) }

8D(E+D) 2+C
(E+4D)(E+2D) 1+C

equilibrium number density of the spheres. In this paper we +
focus only on a suspension-hydrodynamic stffle where (1+C)(E+CE—-2D)(E+CE-D)
the space-time cutoffsx(,t;), which are the minimum 1/2

- ; : here D=BC, E=1-B+C, B(¢)=(9¢+8)"%,
wavelength and time of the dynamic process of interest, ar —114/16, andD, is the single-particle diffusion coeffi-

set asx.>| andtp>t.>tg. Herel denotes the screening : e -
length given byl = (67agnc) “=ao(96/2) *2 in which  Cent Then, the short-tme self-difusion coeflcidh{(«)

the hydrodynamic interactions becomes importahg,
=m/(6m7798,) the Brownian relaxation time of the sphere, DS(¢)=I5S(¢>)D =Dy/[1+L(6)] (5)

and tp,=1%/27D$ the structural-relaxation time which is a S S o0

time required for a particle to diffuse over a distarice The first term in Eq(4) is the most dominant term due to the
where D§(¢) denotes the short-time self-diffusion coeffi- long-range hydrodynamic interactions. The second and third
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terms in Eq.§4)_are ju;t corrections due to the short-rangethe causal motion is smallgn(x,t)/n(x,t)|<1, one can lin-
hydrodynamic interactions and the coupling between thearize Eq.(1) aroundn(x,t) and add a fluctuating force to

short- and long-range hydrodynamic interactions, respecpbtain a linear Langevin equation fon(x,t) [10]
tively. The other is a dynamic many-bodsorrelation effect

K(®) due to the nonlocal long-range hydrodynamic interac- d )
tions, which plays an important role in the intermediate-time S on(xH=Vv [Ds(®@(x,1))dn(x,H)]+R(x,t),  (8)
regiont=ty, and is given by

where R(x,t) denotes a Gaussian, Markov random force

K(P)=(P/dc)/(1=D/ pe)", (6)  with zero mean and satisfies

wherex=2 here.

Equation(1) is the generalized diffusion equation which
describes the causal motion of thg self-diffusion ProCesS Myere the bar denotes the average over a suitable initial sta-
concentrated hard-sphere suspensions. For the short-time Teical ensemble wherén(x,t) =0
giontg<<t<tp, the direct interaction and the correlation ef- ' ' :

fect are negligible. Hence the self-diffusion coefficient Equation (9) is a linear stochastic equation which de-
Do(®(x.1)) reduces t0D§(¢), and the number density scribes a linear relaxation process around the time-dependent

ilibri tate determined b . In order to dis-
n(x,t) is described by the short-time diffusive motion given nonequilibrium state determined by Eq,. In order to dis

s o > i , cuss the stochastic properties of the random force, one has to
by nS(x,t) =exp(-tDV )n(x,0). For thelong-time region  yerjve Eq.(8) from first principles. This is not easy to do in
tp<t, the number densityi(x,t) becomes constant to be general. In the equilibrium state, however, the correlation
ng. Hence Dg(®(x,t)) reduces to the long-time self- fynction of the random forces is easily obtained from .
diffusion coefficient. In fact, from Eq.(8) we obtain, in the limitt—co,

R(x,t)on(x’,0)=0. (9)

(10)

_ ~ _ -~ _ L . i
Where“‘fb 1, ar21d¢>— ¢l pc. Thus,Ds vanishes quadratl- 1,5 £q (10) satisfies the usual fluctuation-dissipation rela-
cally asDs~Dyo“ near¢. because of the singularity of the i of the second kind.

correlation effect. For the intermediate-time region, the be- | terms of the Fourier components

havior of the number density becomes more complicated be-

cause of the singularity of the correlation efféc{®) near _

é.. In fact, such a singularity is expected to play an impor- 5nk(t):f dx exp(ik-x) on(x,t), 11
tant role in the relaxation of the nonequilibrium density fluc-

tuations as a cage effect which causes a structural arrestq. (8) takes the form

leading to slow relaxations nedr,. We will investigate this
next.

We now discuss the fluctuationdn(x,t) around the
causal motiom(x,t). In most cases, they are small as com-
pared to the causal motiaor(x,t). However, they are impor-
tant since they are experimentally observable through the
scattering function by dynamic light scattering measure-
ments[9]. When the relative magnitude of the fluctuations towith the memory function

d
~t O()= —k?Dg( ) ny(1)

—; Mig(t; ) Sng(D+R(t) (12

dx . (1-2)[D§+uo?(1- $2)2-DE?Z{1+u(l—0o— $2)}]
e

M q(t; :kZDSf —e Siax 13
LAZKDS) (B%+ 0%/ DDz +(1- 42)7] w9
|
wherez(x,t)=d(x,t)/ p=n(x,t)/ny. It is convenient to in- The intermediate scattering functidf(k,t) is given by
troduce a correlation functioR4(t) by F(k,t)=F,(t) and can be separated into a self-part
F<(k,t), which describes the average self-motion of indi-
qu(t)zﬁnk(t)ana‘(O)/N. (14) vidual particles, and a cross pdaft(k,t), which describes

the average relative motion between different particles;

F(k,t)=Fg(k,t)+Fc(k,t) [9]. For a scattering vector much

larger than the maximum positidg,, of the structure factor

5 S(k)=F(k,0), the cross parE(k,t) can be neglected and

e — _12pk _ . hence F(k,t) reduces to the self-intermediate-scattering

ot FedO=—KDs(PIFt) zq: Mi(t: £)F (D). function Fg(k,t) with Fg(k,0)=S(k) = 1. From Eq.(15), we
(15 thus obtain

Use of Egs.(9), (12), and(14) then leads to
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Fa(k,t)=f(k,t; ¢p)exp( —k?D5t) (16) 1
with the singular part 0.8 _ ]
t A
f(k,t;p)= exp_{—f m(s;¢)ds] , (17 . 06} -
0 Kk 2 I
wherem(t; ¢) denotes the matrix whog&,q) component is woooar ]
given by i
02 .
Myq(t; ) = exp(k?Dgt) My (t; p)exp —g°Dst). (18)
O PR i
Here exp is a time-ordered exponential, ordered from the -4 12
left, and in order to obtain Eq16), we have used the fact log(D t/a 2)
o] 0

that Fy((0)= 6 . Here we should mention from E¢16)

that the scattering functioRg(k,t) is decoupled into a sin-

gular partf(k,t) and a long-time part. FIG. 1. Schematic behavior of the self-intermediate-scattering
In order to study the relaxation process of the densityfunction Fg(k,t) at kay=2.8 for different volume fractiongfrom

fluctuations around the nonequilibrium state, one must solvéeft to right): 0.543, 0.569, and 0.571 84. The symbols indicate the

the diffusion equatioril) under appropriate initial conditions time scalest, (@), te (0J), tz (O), andt, (#). Figures were ob-

and then calculate Eq16) self-consistently. In the follow- tained by using the asymptotic solution fdr(x,t), which was

ing, however, we only discuss the asymptotic properties ofound by solving Eq(1) in an approximate mann¢t0].

F<(k,t) and show how the singularity of the correlation ef- . )

fect causes the slow relaxation of the nonequilibrium densityV1ere te<tz<t,. By expanding Eq.(13) in powers of

fluctuations. For the short-ime region of order, 0'(1—.2), one can approximately write the memory function

=27-r/k2D§(¢), from Eq. (16), the relaxation obeys the Myq(t; ) as

short-time decay Mig(t; ¢)=—20(1—U)k?Dg[ Sy q— Zk—q(1)/ V]
Fak)=[exp-{-m(0;p)t} (tg<t<t,), (19 +0(s2(1-2)?). (23)

which depends on the initial conditions fa¢x,0). For the This is combined with Eq17) and(22) to obtain
long-time region of ordeta=2w/k2D§, the local volume 5 .

fraction ®(x,t) becomes constant to kg[or z(x,t) =1], and F(k,t)=exgd20(1-u)k“DoCk(te) —k“Dgt], (29
the self-diffusion coefficienDg reduces to the long-time
self-diffusion coefficientDg, where Myq(t; $)=0. Hence
the relaxation is described by the long-time decay

where the positive constai(t.) is a function ofk to be
determined, andr<0. Since the second terkfD%t in Eq.
(24) becomes the same order as the first term in(E4). at

Fi(k,t)=exp(—k?DYt) (t,<t,<t). (20  t=tg, we thus find

- -1
Near the critical volume fractiorb., the timet, is scaled tg~2¢(te)| o] (25)

with the separation parameteras For small volume fractions whetg=<t,, therefore, the pla-
t,~(k?Dg) Y| 2 21) teau disappears and the scattering functions decay quickly to
“ 0 ' zero, obeying Eq(16). As the volume fraction increases and

Therefore, there exists a crossover from the short-time relaxts becomes larger tha,, however, the shape of the scat-
ation process to the long-time relaxation process, where thring functions is expected to become very sensitive to the
intermediate-time region is expected to be extended. We nexlume fraction for longer times>t,,, forming a shoulder,
discuss this. which becomes a plateau with the heigrﬁt at the critical
Let ty(¢) (>t,) denote a characteristic time over which volume fraction¢.. Figure 1 shows schematically how the
the system nearly reaches an equilibrium state wher&cattering functiorFg(k,t) evolves in time asp increases
z(x,t)=1. From Eq.(13), we then obtairM 4(t; ¢)=0 for ~ [10].
t=t,. For the intermediate times=>t,, therefore, Eq(16) Near the critical volume fractiog. the singularity of the
can be approximately written as correlation effectK(d(x,t)) thus causes the two different
slow relaxations concerned with andt in the nonequilib-
Fs(k,t):f(k,te;g{))exr(—kzDgt) (te<t). (22 rium fluid state(o<0) for the intermediate-time region; the
first decay towards the plateau for the time regitn
At the critical volume fractiong., the scattering function <t<tz and the second decay away from the plateau for
Fg(k,t) thus becomes the plateau with the heigtt tg<t<t,, where both times; andt, diverge at the critical
=f(k,te;d¢), while near the critical volume fractiosd,, it ~ volume fractiong. . As was predicted in Ref10], therefore,
is expected to become the plateau for the time regient in the nonequilibrium fluid state nea¥, the relaxation pro-
<t, and then to decay to zero. Lgj(o) denote a crossover ceeds in the following four time stages: The first is the early
time from the plateatff to the long-time decafg(k,t), stage fortg<t<t,, where the relaxation obeys E(L9).
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The second is the so-calle@-relaxation stage foit,<t  effects do change the qualitative behavior of the relaxation

<tz, where the relaxation is expected to obey a power-lanprocess, leading to the slow dynamics. This situation agrees

decay. The third is the so-called-relaxation stage for with a recent computer simulation of a supercooled polymer

ty<t<t,, where the relaxation is expected to obey the vonsystem[11].

Schweidler type power-law decay. The last is the late stage By solving the coupled equation§l) and (8) self-

for t,<t, where the relaxation obeys E@OQ). consistently under appropriate initial conditions, one can ob-
In this paper we have proposed an alternative stochasti@in the detailed properties of slow relaxation processes, in-

diffusion equation(8) to study the dynamics of nonequilib- cluding the power-law behavior, the temporal exponents, and

rium density fluctuations in concentrated colloidal suspenthe crossovers. This calculation is now in progress, showing

sions and then investigated the qualitative behavior of thehat a qualitative behavior dfg(k,t) is quite similar to that

self-intermediate-scattering function. We have shown thain Fig. 1. This will be discussed elsewhere together with a

the singularity of the correlation effect given by E@) comparison with experiments.

causes the two different slow relaxations for the intermediate

times near the critical volume fractiap, if the initial state is

nonequilibrium. If the initial state is equilibrium from the  The author is grateful to Professor W. Van Megen and

beginning, that isz(x,t =0)= 1, the shoulder disappears and Professor D. J. Evans for valuable comments. This work was

the scattering function just obeys the long-time decay giversupported by the Tohwa Institute for Science, Tohwa Uni-

by Eq. (20). Hence we emphasize that the nonequilibriumversity.
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